A parallel code for time-dependent acoustic scattering involving passive or smart obstacles

Silvio Migliori, Giovanni Bracco, Lorella Fatone, Maria Cristina Recchioni, Francesco Zirilli

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

A highly parallelizable numerical method to solve three-dimensional time-dependent acoustic obstacle scattering problems involving passive or smart, furtive, realistic obstacles is presented. ''Realistic'' obstacles have complex geometries, ''passive'' obstacles do not react by taking an action to pursue a goal when hit by an incoming wave, and ''smart furtive'' obstacles, when hit by an incoming wave, pursue the goal of being undetectable by circulating a suitable pressure current on their boundaries. Incoming wave packets containing time-harmonic waves of small wavelengths when compared with the characteristic dimension of the obstacles are considered. The features of the computational method proposed to solve these scattering problems that can be exploited in a parallel and/or distributed computing environment are presented. Numerical experiments involving a simplified version of the NASA space shuttle are discussed. The websites: http://www.econ.univpm.it/ recchioni/scattering/w12, http://www.econ.univpm.it/recchioni/scattering/w14 contain animations and virtual reality applications showing some numerical experiments relative to the problems studied. A more general reference to the work of some of the authors and of their coworkers in acoustic and electromagnetic scattering is the website: http://www.econ. univpm.it/recchioni/scattering. © The Author(s) 2011.
Original languageEnglish
Pages (from-to)70 - 92
Number of pages23
JournalInternational Journal of High Performance Computing Applications
Volume25
Issue number1
DOIs
Publication statusPublished - Feb 2011
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Software
  • Theoretical Computer Science
  • Hardware and Architecture

Cite this