A phenomenological model to study the energy discrimination potential of GEM detectors in the X-ray range

F. Causa, D. Pacella, A. Romano, G. Claps, L. Gabellieri

Research output: Contribution to journalArticle

Abstract

Abstract An empirical model is presented to study the operational characteristics of GEM detectors in the X-ray range and, in particular, its energy discrimination potential. Physical processes are modelled from a macroscopic point of view, to provide a simple but effective simulation tool. Experimental data from monochromatic and combined, two-line fluorescence sources, are used to validate the model and provide realistic estimates of the empirical parameters used in the description. The model is instrumental in understanding the role of threshold, gain and operational conditions to achieve energy-discriminating response. Appropriate choices of gas mixtures, threshold and gain will permit to best utilise this new functionality of the GEM to improve the efficiency of image detectors in applications ranging from in-situ imaging in harsh environments, such as tokamaks, to composite materials analysis and medical imaging of tissues.
Original languageEnglish
Article number57905
Pages (from-to)75 - 80
Number of pages6
JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume799
DOIs
Publication statusPublished - 17 Aug 2015
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Instrumentation

Cite this