A simple atomistic model for the simulation of the gel phase of lipid bilayers

G. La Penna, S. Letardi, V. Minicozzi, S. Morante, G.C. Rossi, G. Salina

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

In this paper we present the results of a large-scale numerical investigation of structural properties of a model of cell membrane, simulated as a bilayer of flexible molecules in vacuum. The study was performed by carrying out extensive Molecular Dynamics simulations, in the (NVE) micro-canonical ensemble, of two systems of different sizes (2 × 32 and 2 × 256 molecules), over a fairly large set of temperatures and densities, using parallel platforms and more standard serial computers. Depending on the dimension of the system, the dynamics was followed for physical times that go from few hundred picoseconds for the largest system to 5-10 nanoseconds for the smallest one. We find that the bilayer remains stable even in the absence of water and neglecting Coulomb interactions in the whole range of temperatures and densities we have investigated. The extension of the region of physical parameters that we have explored has allowed us to study significant points in the phase digram of the bilayer and to expose marked structural change as density and temperature are varied, which are interpreted as the system passing from a crystal to a gel phase.
Original languageEnglish
Pages (from-to)259 - 274
Number of pages16
JournalEuropean Physical Journal E
Volume5
Issue number3
DOIs
Publication statusPublished - Jun 2001
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biophysics
  • Chemistry(all)
  • Materials Science(all)
  • Surfaces and Interfaces

Cite this

La Penna, G., Letardi, S., Minicozzi, V., Morante, S., Rossi, G. C., & Salina, G. (2001). A simple atomistic model for the simulation of the gel phase of lipid bilayers. European Physical Journal E, 5(3), 259 - 274. https://doi.org/10.1007/s101890170058