A spatially-explicit method to assess the dry deposition of air pollution by urban forests in the city of Florence, Italy

Francesca Bottalico, Davide Travaglini, Gherardo Chirici, Vittorio Garfì, Francesca Giannetti, Alessandra De Marco, Silvano Fares, Marco Marchetti, Susanna Nocentini, Elena Paoletti, Fabio Salbitano, Giovanni Sanesi

Research output: Contribution to journalArticle

22 Citations (Scopus)


Urban forests (UF) provide a range of important ecosystem services (ES) for human well-being. Relevant ES delivered by UF include urban temperature regulation, runoff mitigation, noise reduction, recreation, and air purification. In this study the potential of air pollution removal by UF in the city of Florence (Italy) was investigated. Two main air pollutants were considered – particulate matter (PM10) and tropospheric ozone (O3) – with the aim of providing a methodological framework for mapping air pollutant removal by UF and assessing the percent removal of air pollutant. The distribution of UF was mapped by high spatial resolution remote sensing data and classified into seven forest categories. The Leaf Area Index (LAI) was estimated spatially using a regression model between in-field LAI survey and Airborne Laser Scanning data and it was found to be in good linear agreement with estimates from ground-based measurements (R2= 0.88 and RMSE% = 11%). We applied pollution deposition equations by using pollution concentrations measured at urban monitoring stations and then estimated the pollutant removal potential of the UF: annual O3and PM10removal accounted for 77.9 t and 171.3 t, respectively. O3and PM10removal rates by evergreen broadleaves (16.1 and 27.3 g/m2), conifers (10.9 and 28.5 g/m2), and mixed evergreen species (15.8 and 31.7 g/m2) were higher than by deciduous broadleaf stands (4.1 and 10 g/m2). However, deciduous forests exhibited the largest total removal due to the high percentage of tree cover within the city. The present study confirms that UF play an important role in air purification in Mediterranean cities as they can remove monthly up to 5% of O3and 13% of PM10.
Original languageEnglish
Pages (from-to)221 - 234
Number of pages14
JournalUrban Forestry and Urban Greening
Publication statusPublished - 1 Oct 2017
Externally publishedYes


All Science Journal Classification (ASJC) codes

  • Forestry
  • Ecology
  • Soil Science

Cite this

Bottalico, F., Travaglini, D., Chirici, G., Garfì, V., Giannetti, F., De Marco, A., Fares, S., Marchetti, M., Nocentini, S., Paoletti, E., Salbitano, F., & Sanesi, G. (2017). A spatially-explicit method to assess the dry deposition of air pollution by urban forests in the city of Florence, Italy. Urban Forestry and Urban Greening, 27, 221 - 234. https://doi.org/10.1016/j.ufug.2017.08.013