Adsorbent materials for low-grade waste heat recovery: Application to industrial pasta drying processes

Sara Bellocchi, Giuseppe Leo Guizzi, Michele Manno, Marzia Pentimalli, Marco Salvatori, Alessandro Zaccagnini

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Energy intensive industries face strong challenges due to rising electricity costs and environmental limitations, therefore, developing methods for energy efficiency improvement is becoming an increasingly important issue. With an estimated 30% of industrial energy input being lost as waste heat, its recovery represents an interesting energy efficiency solution potentially providing for a zero-emission, low cost and abundant resource. This study presents an innovative technology for low-grade waste heat recovery based on advanced adsorbent materials, specifically applied to the drying process of alimentary pasta. Warm and humid air flow resulting from the drying process represents a high-enthalpy waste heat source that, if recovered, can significantly improve the process efficiency. This can be achieved by means of high specific surface materials among which Metal Organic Framework (MOF) compounds represent a promising solution. In this work, the industrial pasta production process has been studied and possible plant design options identified, including an innovative adsorption cycle to recover waste heat from the drying process. The thermodynamic processes involved in pasta drying plants have been quantitatively analysed to assess the energy savings that can be achieved by using adsorbent materials such as MOFs. Results point to thermal energy savings in the range 40–50%.
Original languageEnglish
Pages (from-to)729 - 745
Number of pages17
JournalEnergy
Volume140
DOIs
Publication statusPublished - 2017
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Building and Construction
  • Pollution
  • Energy(all)
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Cite this