Cancellation of drift kinetic effects between thermal and energetic particles on the resistive wall mode stabilization

S.C. Guo, Y.Q. Liu, X.Y. Xu, Z.R. Wang

Research output: Contribution to journalArticle

7 Citations (Scopus)


Drift kinetic stabilization of the resistive wall mode (RWM) is computationally investigated using MHD-kinetic hybrid code MARS-K following the non-perturbative approach (Liu et al 2008 Phys. Plasmas 15 112503), for both reversed field pinch (RFP) and tokamak plasmas. Toroidal precessional drift resonance effects from trapped energetic ions (EIs) and various kinetic resonances between the mode and the guiding center drift motions of thermal particles are included into the self-consistent toroidal computations. The results show cancellation effects of the drift kinetic damping on the RWM between the thermal particles and EIs contributions, in both RFP and tokamak plasmas, even though each species alone can provide damping and stabilize RWM instability by respective kinetic resonances. The degree of cancellation generally depends on the EIs equilibrium distribution, the particle birth energy, as well as the toroidal flow speed of the plasma.
Original languageEnglish
Article number076006
Pages (from-to)-
JournalNuclear Fusion
Issue number7
Publication statusPublished - 10 Jun 2016
Externally publishedYes


All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Condensed Matter Physics

Cite this