CO

Michela Martinelli, Carlo Giorgio Visconti, Luca Lietti, Pio Forzatti, Claudia Bassano, Paolo Deiana

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

In the presence of low cost H2, the hydrogenation of pure CO2streams (e.g., from carbon capture processes) or CO/CO2mixtures (e.g., from biomass of coal gasification) to fuels is a potential solution to convert the primary greenhouse gas into a valuable building block for the synthesis of high-added value products. Iron based Fischer-Tropsch catalysts, known for their reverse water gas shift activity, are good candidates to run such process. However, their reactivity depends on the catalyst formulation which may vary significantly in the presence of supports or promoters. Also, the H2/COxinlet ratio may strongly influence the catalyst activity and selectivity. With the purpose of gaining more insights into the reactivity of carbon dioxide, the catalytic performances of K-promoted 100Fe/10Zn/1Cu samples have been comparatively studied in CO, CO2, and CO/CO2hydrogenation processes with low H2/COxratios varying from 0.5 to 1. We have found that traditional iron-based catalysts for the Fischer-Tropsch synthesis can be successfully used to obtain high added-value products from CO2even in the presence of H2deficient feed streams. In the case of pure CO2hydrogenation, the most promising results are obtained with strong potassium promoted iron catalysts which grant interesting selectivities toward middle distillates by favoring CO2adsorption. In the presence of strongly adsorbed CO, CO2is instead hardly converted independently on the K-loading. The presence of CO2does not affect the product distribution either. Nevertheless, CO2has a key-role in preventing the CO shift to CO2, thus improving the overall economy of the conversion process and avoiding a net CO2production. Interestingly, upon increasing the K-loading, the CO conversion rate is decreased, both in the presence and in the absence of CO2, possibly as a result of the very strong CO adsorption on the catalytic surface. Such result is however complicated by the presence of initial deactivation phenomena, whose rates may be also related to the K-loading of the catalyst. Accordingly, the best catalyst formulation appears to be significantly different depending on the presence of CO in the feed. © 2013 Elsevier B.V. All rights reserved.
Original languageEnglish
Pages (from-to)77 - 88
Number of pages12
JournalCatalysis Today
Volume228
DOIs
Publication statusPublished - 1 Jun 2014

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)

Cite this

Martinelli, M., Visconti, C. G., Lietti, L., Forzatti, P., Bassano, C., & Deiana, P. (2014). CO. Catalysis Today, 228, 77 - 88. https://doi.org/10.1016/j.cattod.2013.11.018