Cochliotoxin, a Dihydropyranopyran-4,5-dione, and Its Analogues Produced by Cochliobolus australiensis Display Phytotoxic Activity against Buffelgrass (Cenchrus ciliaris)

Marco Masi, Susan Meyer, Suzette Clement, Alessio Cimmino, Massimo Cristofaro, Antonio Evidente

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Buffelgrass (Pennisetum ciliare or Cenchrus ciliaris) is a perennial grass that has become highly invasive in the Sonoran Desert of southern Arizona. In the search for novel control strategies against this weed, strains of the foliar fungal pathogen Cochliobolus australiensis from buffelgrass have been screened for their ability to produce phytotoxic metabolites that could potentially be used as natural herbicides in an integrated pest management strategy. A new phytotoxin, named cochliotoxin, was isolated from liquid culture of this fungus together with radicinin, radicinol, and their 3-epimers. Cochliotoxin was characterized, essentially by spectroscopic methods, as 3-hydroxy-2-methyl-7-(3-methyloxiranyl)-2,3-dihydropyrano[4,3-b]pyran-4,5-dione. Its relative stereochemistry was assigned by1H NMR techniques, while the absolute configuration (2S,3S) was determined applying the advanced Mosher's method by esterification of its hydroxy group at C-3. When bioassayed in a buffelgrass coleoptile elongation test and by leaf puncture bioassay against the host weed and two nontarget grasses, cochliotoxin showed strong phytotoxicity. In the same tests, radicinin and 3-epi-radicinin also showed phytotoxic activity, while radicinol and 3-epi-radicinol were largely inactive. All five compounds were more active in leaf puncture bioassays on buffelgrass than on the nontarget grass tanglehead (Heteropogon contortus), while the nontarget grass Arizona cottontop (Digitaria californica) was more sensitive to radicinin and 3-epi-radicinin. Cochliotoxin at low concentration was significantly more active on buffelgrass than on either native grass, but the difference was small.
Original languageEnglish
Pages (from-to)1241 - 1247
Number of pages7
JournalJournal of Natural Products
Volume80
Issue number5
DOIs
Publication statusPublished - 26 May 2017
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Molecular Medicine
  • Pharmacology
  • Pharmaceutical Science
  • Drug Discovery
  • Complementary and alternative medicine
  • Organic Chemistry

Cite this