Computational thermofluid-dynamic analysis of DEMO divertor cassette body cooling circuit

P.A. Di Maio, S. Garitta, J.H. You, G. Mazzone, M. Marino, E. Vallone

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Within the framework of the Work Package Divertor, Subproject: Cassette Design and Integration (WPDIV-Cassette) of the EUROfusion action, a research campaign has been jointly carried out by ENEA and University of Palermo to investigate the thermal-hydraulic performances of the DEMO divertor cassette cooling system. The research activity has been carried out following a theoretical-computational approach based on the finite volume method and adopting a qualified Computational Fluid-Dynamic (CFD) code. Fully-coupled fluid-structure CFD analyses have been carried out for the recently-revised cassette body cooling circuit under nominal steady state conditions, imposing a non-uniform spatial distribution of nuclear-deposited heat power volumetric density drawn from the most recent neutron transport analysis. The pertaining thermal-hydraulic performances have been assessed in terms of coolant flow velocity and total pressure distributions as well as of coolant and structure temperature distributions to check whether they comply with the corresponding prescribed limits. Results obtained are reported and critically discussed.
Original languageEnglish
Pages (from-to)-
JournalFusion Engineering and Design
DOIs
Publication statusAccepted/In press - 2018
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Nuclear Energy and Engineering
  • Materials Science(all)
  • Mechanical Engineering

Cite this