Coupled atomistic-mesoscopic model of polycrystalline plasticity

Fabrizio Cleri, Gregorio D'Agostino, Alessandra Satta, Luciano Colombo

Research output: Contribution to conferencePaper

Abstract

We discuss a microstructure evolution framework which couples atomic-level information about extended-defect interactions into a mesoscopic model; the latter, in turn, describes the dy-namic evolution of a statistical population of grain boundaries and dislocations. Atomistic simulations are carried out by means of molecular dynamics simulations on both isolated and interacting dislocations, grain boundaries, triple junctions, microcracks; the reference material for such studies is, at present, Silicon with the Stillinger-Weber potential. The mesoscale model describes the motion of discrete triple junctions (and, consequently, of the continuous network of adjoining grain boundaries) embedded in a continuous medium containing a homogeneous, evolving distribution of dislocations.
Original languageEnglish
Publication statusPublished - 2001
EventAdvances in Materials Therory and Modeling - Bridging Over Multiple Length and Time Scales - , United States
Duration: 1 Jan 2001 → …

Conference

ConferenceAdvances in Materials Therory and Modeling - Bridging Over Multiple Length and Time Scales
CountryUnited States
Period1/1/01 → …

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

Cleri, F., D'Agostino, G., Satta, A., & Colombo, L. (2001). Coupled atomistic-mesoscopic model of polycrystalline plasticity. Paper presented at Advances in Materials Therory and Modeling - Bridging Over Multiple Length and Time Scales, United States.