Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H.J. Van Der Meiden, P. Petersson, M. Rubel, A. Huber, M. ZlobinskiB. Schweer, N. Gierse, Q. Xiao, G. Sergienko

Research output: Contribution to journalArticle

58 Citations (Scopus)


Analysis and understanding of wall erosion, material transport and fuel retention are among the most important tasks for ITER and future devices, since these questions determine largely the lifetime and availability of the fusion reactor. These data are also of extreme value to improve the understanding and validate the models of the in vessel build-up of the T inventory in ITER and future D-T devices. So far, research in these areas is largely supported by post-mortem analysis of wall tiles. However, access to samples will be very much restricted in the next-generation devices (such as ITER, JT-60SA, W7-X, etc) with actively cooled plasma-facing components (PFC) and increasing duty cycle. This has motivated the development of methods to measure the deposition of material and retention of plasma fuel on the walls of fusion devices in situ, without removal of PFC samples. For this purpose, laser-based methods are the most promising candidates. Their feasibility has been assessed in a cooperative undertaking in various European associations under EFDA coordination. Different laser techniques have been explored both under laboratory and tokamak conditions with the emphasis to develop a conceptual design for a laser-based wall diagnostic which is integrated into an ITER port plug, aiming to characterize in situ relevant parts of the inner wall, the upper region of the inner divertor, part of the dome and the upper X-point region. © 2013 IAEA, Vienna.
Original languageEnglish
Article number093002
Pages (from-to)-
JournalNuclear Fusion
Issue number9
Publication statusPublished - Sep 2013
Externally publishedYes


All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Condensed Matter Physics

Cite this

Philipps, V., Malaquias, A., Hakola, A., Karhunen, J., Maddaluno, G., Almaviva, S., Caneve, L., Colao, F., Fortuna, E., Gasior, P., Kubkowska, M., Czarnecka, A., Laan, M., Lissovski, A., Paris, P., Van Der Meiden, H. J., Petersson, P., Rubel, M., Huber, A., ... Sergienko, G. (2013). Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices. Nuclear Fusion, 53(9), -. [093002].