Development of molten carbonate fuel cell using novel cathode material

L. Giorgi, M. Carewska, S. Scaccia, E. Simonetti, E. Giacometti, R. Tulli

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

The slow dissolution of lithiated-NiO cathodes in molten carbonates is the main obstacle for the commercialization of molten carbonate fuel cells. The aim of the present work was to investigate the possibility of producing an electrode based on LiCoO2. The LixCoO2powder samples (0.8 < x < 1.1) were obtained by thermal decomposition of carbonate, acetate and oxide precursors, in air. The syntheses were monitored by thermal analysis (TGA, DTA). The calcined and sintered powder samples were characterized by X-ray diffraction and atomic absorption spectroscopy The porous electrodes were prepared with different pore-formers by cold pressing and sintering. A bi-modal pore size distribution was observed in all the materials. Conductivity measurements were carried out in the temperature range 500-700°C. The solubility in molten carbonates was measured. To test the cathodic performance of the materials under study, electrochemical impedance spectroscopy measurements were carried out to investigate the porous electrode/molten carbonate interface. Copyright © 1996 International Association for Hydrogen Energy.
Original languageEnglish
Pages (from-to)491 - 496
Number of pages6
JournalInternational Journal of Hydrogen Energy
Volume21
Issue number6
DOIs
Publication statusPublished - 1996

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Cite this