Effect of BaZrO

Nicola Pompeo, Raffaella Rogai, Valentina Galluzzi, Andrea Augieri, Giuseppe Celentano, Lelia Ciontez, Traian Petrisor, Enrico Silva

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

We perform measurements of high-frequency (∼48 GHz) microwave surface impedance with an applied magnetic field in YBa3 Cu3O7-δ(YBCO) laser-ablated films with various amounts of BaZrO3(BZO) sub-micrometric inclusions, up to 7 mol % concentration. BZO inclusions are very effective in the reduction of the field-induced surface resistance in our experimentally accessible field range [0, 0.8] T. At temperatures low enough, the application of a moderate (∼0.2 T) field makes the YBCO/BZO films markedly less dissipative than pure YBCO. This result, examined in the light of the very high measuring frequency (very small vortex oscillation amplitude) shows that BZO inclusions are even more effective pinning centers than columnar defects. We study the dependence ofthe vortex parameters (vortex viscosity, pinning constant) on the BZO concentration. We examine the correlation between the reduction of the microwave dissipation and the areal density of BZO-induced defects. We argue that the very improved performances in a magnetic field are due to individual pinning of vortices on BZO inclusions. © 2009 IEEE.
Original languageEnglish
Article number5153232
Pages (from-to)2917 - 2920
Number of pages4
JournalIEEE Transactions on Applied Superconductivity
Volume19
Issue number3
DOIs
Publication statusPublished - Jun 2009
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Cite this