Electric Power System Anomaly Detection Using Neural Networks

Marco Martinclli, Enrico Tronci, Giovanni Dipoppa, Claudio Balducelli

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

The aim of this work is to propose an approach to monitor and protect Electric Power System by learning normal system behaviour at substations level, and raising an alarm signal when an abnormal status is detected; the problem is addressed by the use of autoassociative neural networks, reading substation measures. Experimental results ' show that, through the proposed approach, neural networks can be used to learn parameters underlaying system behaviour, and their output processed to detecting anomalies due to hijacking of measures, changes in the power network topology (i.e. transmission lines breaking) and unexpected power demand trend. © Springer-Verlag 2004.
Original languageEnglish
Pages (from-to)1242 - 1248
Number of pages7
JournalLecture Notes in Computer Science
Volume3213
Publication statusPublished - 2004
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

Cite this

Martinclli, M., Tronci, E., Dipoppa, G., & Balducelli, C. (2004). Electric Power System Anomaly Detection Using Neural Networks. Lecture Notes in Computer Science, 3213, 1242 - 1248.