Expression of insulin-like growth factor-binding protein 5 in neuroblastoma cells is regulated at the transcriptional level by c-Myb and b-Myb via direct and indirect mechanisms

Barbara Tanno, Anna Negroni, Roberta Vitali, Maria Celeste Pirozzoli, Vincenzo Cesi, Camillo Mancini, Bruno Calabretta, Giuseppe Raschellà

Research output: Contribution to journalArticle

39 Citations (Scopus)


Neuroblastoma (NB), a malignant childhood tumor deriving from the embryonic neural crest, is sensitive to the growth-stimulating effects of insulin-like growth factors (IGFs). Aggressive cases of this disease often acquire autocrine loops of IGF production, but the mechanisms through which the different components of the IGF axis are regulated in tumor cells remain unclear. Upon conditional expression of c-Myb in a NB cell line, we detected up-regulation of IGF1, IGF1 receptor, and insulin-like growth factor-binding protein 5 (IGFBP-5) expression. Analysis of the IGFBP-5 promoter revealed two potential Myb binding sites at position -59 to -54 (M1) and -429 to -424 (M2) from the transcription start site; both sites were bound by c-Myb and B-Myb in vitro and in vivo. Reporter assays carried out using the proximal region of the human IGFBP-5 promoter demonstrated that c-Myb and B-Myb enhanced transcription. However, site-directed mutagenesis and deletion of the Myb binding sites coupled with reporter assays revealed that M2 but not M1 was important for Myb-dependent transactivation of the IGFBP-5 promoter. The double mutant M1/M2 was still transactivated by c-Myb, suggesting the existence of Myb binding-independent mechanisms of IGFBP-5 promoter regulation. A constitutively active AKT transactivated the IGFBP-5 promoter, whereas the phosphatidylinositol 3-kinase inhibitor LY294002 suppressed it. Moreover, the kinase dead dominant negative K179M AKT mutant was able to inhibit transcription from the M2 and M1/M2 IGFBP-5 mutant promoters. Deletion analysis of the IGFBP-5 promoter revealed that the AKT-responsive region lies between nucleotides -334 and -83. Together, these data suggest that the Myb binding-independent transactivation of the IGFBP-5 promoter was due to the activation of the phosphatidylinositol 3-kinase/AKT pathway likely mediated by IGF1 receptor-dependent signals. Finally, IGFBP-5 was able to modulate proliferation of NB cells in a manner dependent on its concentration and on the presence of IGFs.
Original languageEnglish
Pages (from-to)23172 - 23180
Number of pages9
JournalJournal of Biological Chemistry
Issue number26
Publication statusPublished - 28 Jun 2002
Externally publishedYes


All Science Journal Classification (ASJC) codes

  • Biochemistry

Cite this