Fracture mechanisms in epoxy composites reinforced with carbon nanotubes

S. Laurenzi, S. Botti, A. Rufoloni, M.G. Santonicola

Research output: Contribution to conferencePaper

16 Citations (Scopus)

Abstract

Recent advances in nanotechnology and nanostructured materials offer the possibility to improve the mechanical properties of composite structures in terms of toughness and stiffness. In particular, in aerospace applications research efforts are focused on the design of advanced composite materials reinforced with carbon nanotubes (CNTs) that combine weight saving with multifunctional properties, including thermal, mechanical and electromagnetic ones. It is well known that carbon nanoparticles enhance the fracture strength, the modulus, and the yield strength of a polymer matrix through different mechanisms. However, despite the large amount of investigations on CNT-based composites and their relevant properties, there is a lack of understanding of the mechanisms leading to the failure of these materials under impact or static loads, which limits their use in practical applications. In this work, we present an experimental investigation of the fracture mechanisms of aerospace grade epoxy composites reinforced with multi-walled CNTs bridging the mechanical characterization with non-destructive methods, such as optical spectroscopy and electron microscopy. Our results show that it is possible to link the failure mechanisms of the nanostructured composite at the interface between the CNT and the epoxy matrix, namely cracking, pull-out and telescopic failure, with the molecular fingerprint of the carbon structure at the fracture surface after mechanical testing.
Original languageEnglish
DOIs
Publication statusPublished - 2014
Externally publishedYes
Event1st International Symposium on Dynamic Response and Failure of Composite Materials, DRaF 2014 - Ischia, Naples, Italy
Duration: 1 Jan 2014 → …

Conference

Conference1st International Symposium on Dynamic Response and Failure of Composite Materials, DRaF 2014
CountryItaly
CityIschia, Naples
Period1/1/14 → …

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Cite this

Laurenzi, S., Botti, S., Rufoloni, A., & Santonicola, M. G. (2014). Fracture mechanisms in epoxy composites reinforced with carbon nanotubes. Paper presented at 1st International Symposium on Dynamic Response and Failure of Composite Materials, DRaF 2014, Ischia, Naples, Italy. https://doi.org/10.1016/j.proeng.2014.11.139