Hydrogen/air supersonic combustion for future hypersonic vehicles

D. Cecere, A. Ingenito, E. Giacomazzi, L. Romagnosi, C. Bruno

Research output: Contribution to journalArticle

86 Citations (Scopus)


In this work, supersonic hydrogen combustion in the Hyshot II scramjet engine is investigated. In particular, fundamental physics of mixing, combustion and vorticity generation as well as the interaction between shock waves, boundary layer and heat release are analyzed by means of 3D Large Eddy Simulations (LES) using detailed chemistry. Results show very complex structures due to the interaction between the four sonic H2crossflow injections and the airstream flowing at M = 2.79. A bow shock forms ahead of each H2injector: the interaction between bow shocks and boundary layers leads to separation zones where H2recirculates. In these recirculation zones, OH radicals are produced, indicating that a flame already starts upstream of the injectors and downstream of the flow separation. The formation of barrel shocks due to the H2expansion and recompressions is also predicted. Comparison of pressure distribution along the wall centreline at 1.3 ms shows agreement with experimental results, mostly in the first part of the combustor, where the grid is very fine. The combustion is very fast and efficient: only 12.35% of hydrogen is found unburned at the combustor exit. This confirms that burning hydrogen is efficient and feasible also in supersonic flows and therefore it is a good candidate for hypersonic airbreathing applications. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Original languageEnglish
Pages (from-to)11969 - 11984
Number of pages16
JournalInternational Journal of Hydrogen Energy
Issue number18
Publication statusPublished - Sep 2011


All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Cite this