Innovative design for FAST divertor compatible with remote handling, electromagnetic and mechanical analyses

Giuseppe Di Gironimo, Maurizio Cacace, Fabio Crescenzi, Carmelenzo Labate, Antonio Lanzotti, Flavio Lucca, Domenico Marzullo, Rocco Mozzillo, Irene Pagani, Giuseppe Ramogida, Selanna Roccella, Fabio Viganò

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Divertor is a crucial component in Tokamaks, aiming to exhaust the heat power and particles fluxes coming from the plasma during discharges. This paper focuses on the optimization process of FAST divertor, aimed at achieving required thermo-mechanical capabilities and the remote handling (RH) compatibility. Divertor RH system final layout has been chosen between different concept solutions proposed and analyzed within the principles of Theory of Inventive Problem Solving (TRIZ). The design was aided by kinematic simulations performed using Digital Mock-Up capabilities of Catia software. Considerable electromagnetic (EM) analysis efforts and top-down CAD approach enabled the design of a final and consistent concept, starting from a very first dimensioning for EM loads. In the final version here presented, the divertor cassette supports a set of tungsten (W) actively cooled tiles which compose the inner and outer vertical targets, facing the plasma and exhausting the main part of heat flux. W-tiles are assembled together considering a minimum gap tolerance (0.1-0.5 mm) to be mandatorily respected. Cooling channels have been re-dimensioned to optimize the geometry and the layout of coolant volume inside the cassette has been modified as well to enhance the general efficiency.
Original languageEnglish
Pages (from-to)1465 - 1469
Number of pages5
JournalFusion Engineering and Design
Volume98-99
DOIs
Publication statusPublished - 1 Oct 2015
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Nuclear Energy and Engineering
  • Materials Science(all)
  • Mechanical Engineering

Cite this