Materials R&D for a timely DEMO: Key findings and recommendations of the EU Roadmap Materials Assessment Group

Derek Stork, Pietro Agostini, Jean-Louis Boutard, Derek Buckthorpe, Eberhard Diegele, Sergei L. Dudarev, Colin English, Gianfranco Federici, Mark R. Gilbert, Sehila Gonzalez, Angel Ibarra, Christian Linsmeier, Antonella Li Puma, Gabriel Marbach, Lee W. Packer, Baldev Raj, Michael Rieth, Min Quang Tran, David J. Ward, Steven J. Zinkle

Research output: Contribution to journalArticle

76 Citations (Scopus)


The findings of the EU Fusion Programme's 'Materials Assessment Group' (MAG), assessing readiness of Structural, Plasma Facing (PF) and High Heat Flux (HHF) materials for DEMO, are discussed. These are incorporated into the EU Fusion Power Roadmap [1], with a decision to construct DEMO in the early 2030s. The methodology uses project-based and systems-engineering approaches, the concept of Technology Readiness Levels, and considers lessons learned from Fission reactor material development. 'Baseline' materials are identified for each DEMO role, and the DEMO mission risks analysed from the known limitations, or unknown properties, associated with each baseline material. R&D programmes to address these risks are developed. The DEMO assessed has a phase I with a 'starter blanket': the blanket must withstand ≥2 MW yr m-2fusion neutron flux (equivalent to ∼20 dpa front-wall steel damage). The baseline materials all have significant associated risks, so development of 'Risk Mitigation Materials' (RMM) is recommended. The R&D programme has parallel development of the baseline and RMM, up to 'down-selection' points to align with decisions on the DEMO blanket and divertor engineering definition. ITER licensing experience is used to refine the issues for materials nuclear testing, and arguments are developed to optimise scope of materials tests with fusion neutron ('14 MeV') spectra before DEMO design finalisation. Some 14 MeV testing is still essential, and the Roadmap requires deployment of a ≥30 dpa (steels) testing capability by 2026. Programme optimisation by the pre-testing with fission neutrons on isotopically- or chemically-doped steels and with ion-beams is discussed along with the minimum 14 MeV testing programme, and the key role which fundamental and mission-oriented modelling can play in orienting the research. © 2013 Elsevier B.V.
Original languageEnglish
Pages (from-to)1586 - 1594
Number of pages9
JournalFusion Engineering and Design
Issue number7-8
Publication statusPublished - 2014
Externally publishedYes


All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Nuclear Energy and Engineering
  • Materials Science(all)
  • Mechanical Engineering

Cite this

Stork, D., Agostini, P., Boutard, J-L., Buckthorpe, D., Diegele, E., Dudarev, S. L., English, C., Federici, G., Gilbert, M. R., Gonzalez, S., Ibarra, A., Linsmeier, C., Puma, A. L., Marbach, G., Packer, L. W., Raj, B., Rieth, M., Tran, M. Q., Ward, D. J., & Zinkle, S. J. (2014). Materials R&D for a timely DEMO: Key findings and recommendations of the EU Roadmap Materials Assessment Group. Fusion Engineering and Design, 89(7-8), 1586 - 1594.