Microdosimetry for nanosecond pulsed electric field applications: A parametric study for a single cell

Caterina Merla, Alessandra Paffi, Francesca Apollonio, Philippe Leveque, Guglielmo D'Inzeo, Micaela Liberti

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

A microdosimetric study of nanosecond pulsed electric fields, including dielectric dispersivity of cell compartments, is proposed in our paper. A quasi-static solution based on the Laplace equation was adapted to wideband signals and used to address the problem of electric field estimation at cellular level. The electric solution was coupled with an asymptotic electroporation model able to predict membrane pore density. An initial result of our paper is the relevance of the dielectric dispersivity, providing evidence that both the transmembrane potential and the pore density are strongly influenced by the choice of modeling used. We note the crucial role played by the dielectric properties of the membrane that can greatly impact on the poration of the cell. This can partly explain the selective action reported on cancerous cells in mixed populations, if one considers that tumor cells may present different dielectric responses. Moreover, these kinds of studies can be useful to determine the appropriate setting of nsPEF generators as well as for the design and optimization of new-generation devices. © 2006 IEEE.
Original languageEnglish
Article number5680599
Pages (from-to)1294 - 1302
Number of pages9
JournalIEEE Transactions on Biomedical Engineering
Volume58
Issue number5
DOIs
Publication statusPublished - May 2011
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering

Cite this