More accurate macro-models of solid oxide fuel cells through electrochemical and microstructural parameter estimation - Part I: Experimentation

Carlos Boigues Muñoz, Davide Pumiglia, Stephen J. McPhail, Dario Montinaro, Gabriele Comodi, Giulio Santori, Maurizio Carlini, Fabio Polonara

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

The distributed relaxation times (DRT) method has been employed in order to deconvolute the electrochemical impedance spectroscopy (EIS) measurements carried out on a Ni-YSZ|YSZ|Pr2NiO4+d δ GDC solid oxide fuel cell (SOFC). This has enabled to shed light on the diverse physicochemical processes occurring within the aforementioned cell by individuating the characteristic relaxation times of these by means of a specifically designed experimental campaign where temperature and gas compositions in anode and cathode were varied one at a time. A comprehensive equivalent circuit model (ECM) has thus been generated based on the processes observed in the DRT spectra. This ECM has proved to be instrumental for the obtainment of parameters which describe the microstructural and electrochemical properties of the SOFC when used contemporaneously with experimental results and modelling theory (described in Part II of this work).
Original languageEnglish
Pages (from-to)658 - 668
Number of pages11
JournalJournal of Power Sources
Volume294
DOIs
Publication statusPublished - 6 Jul 2015
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Cite this