Nitrogen-doped graphene films from chemical vapor deposition of pyridine: Influence of process parameters on the electrical and optical properties

Andrea Capasso, Theodoros Dikonimos, Francesca Sarto, Alessio Tamburrano, Giovanni De Bellis, Maria Sabrina Sarto, Giuliana Faggio, Angela Malara, Giacomo Messina, Nicola Lisi

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

Graphene films were produced by chemical vapor deposition (CVD) of pyridine on copper substrates. Pyridine-CVD is expected to lead to doped graphene by the insertion of nitrogen atoms in the growing sp2carbon lattice, possibly improving the properties of graphene as a transparent conductive film. We here report on the influence that the CVD parameters (i.e., temperature and gas flow) have on the morphology, transmittance, and electrical conductivity of the graphene films grown with pyridine. A temperature range between 930 and 1070 °C was explored and the results were compared to those of pristine graphene grown by ethanol-CVD under the same process conditions. The films were characterized by atomic force microscopy, Raman and X-ray photoemission spectroscopy. The optical transmittance and electrical conductivity of the films were measured to evaluate their performance as transparent conductive electrodes. Graphene films grown by pyridine reached an electrical conductivity of 14.3 × 105S/m. Such a high conductivity seems to be associated with the electronic doping induced by substitutional nitrogen atoms. In particular, at 930 °C the nitrogen/carbon ratio of pyridine-grown graphene reaches 3%, and its electrical conductivity is 40% higher than that of pristine graphene grown from ethanol-CVD.
Original languageEnglish
Pages (from-to)2028 - 2038
Number of pages11
JournalBeilstein Journal of Nanotechnology
Volume6
Issue number1
DOIs
Publication statusPublished - 2015

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Physics and Astronomy(all)
  • Electrical and Electronic Engineering

Cite this