Nonlinear dynamics of phase space zonal structures and energetic particle physics in fusion plasmas

F. Zonca, L. Chen, S. Briguglio, G. Fogaccia, G. Vlad, X. Wang

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

A general theoretical framework for investigating the nonlinear dynamics of phase space zonal structures is presented in this work. It is then, more specifically, applied to the limit where the nonlinear evolution time scale is smaller or comparable to the wave-particle trapping period. In this limit, both theoretical and numerical simulation studies show that nonadiabatic frequency chirping and phase locking could lead to secular resonant particle transport on meso- or macro-scales. The interplay between mode structures and resonant particles then provides the crucial ingredient to properly understand and analyze the nonlinear dynamics of Alfv�n wave instabilities excited by nonperturbative energetic particles in burning fusion plasmas. Analogies with autoresonance in nonlinear dynamics and with superradiance in free-electron lasers are also briefly discussed.
Original languageEnglish
Article number013052
Pages (from-to)-
JournalNew Journal of Physics
Volume17
DOIs
Publication statusPublished - 27 Jan 2015
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this