Numerically derived parametrisation of optimal RMP coil phase as a guide to experiments on ASDEX Upgrade

D.A. Ryan, Y.Q. Liu, L. Li, A. Kirk, M. Dunne, B. Dudson, P. Piovesan, W. Suttrop, M. Willensdorfer

Research output: Contribution to journalArticle

6 Citations (Scopus)


Edge localised modes (ELMs) are a repetitive MHD instability, which may be mitigated or suppressed by the application of resonant magnetic perturbations (RMPs). In tokamaks which have an upper and lower set of RMP coils, the applied spectrum of the RMPs can be tuned for optimal ELM control, by introducing a toroidal phase differenceδΦbetween the upper and lower rows. The magnitude of the outermost resonant component of the RMP field bres1||(other proposed criteria are discussed herein) has been shown experimentally to correlate with mitigated ELM frequency, and to be controllable byδΦ(Kirk et al 2013 Plasma Phys. Control. Fusion 53 043007). This suggests that ELM mitigation may be optimised by choosing δΦ =δΦopt, such that bres1||is maximised. However it is currently impractical to computeδΦoptin advance of experiments. This motivates this computational study of the dependence of the optimal coil phase differenceδΦopt, on global plasma parameters βN and q95, in order to produce a simple parametrisation ofδΦopt. In this work, a set of tokamak equilibria spanning a wide range of (βN, q95) is produced, based on a reference equilibrium from an ASDEX Upgrade experiment. The MARS-F code (Liu et al 2000 Phys. Plasmas 73681) is then used to compute δΦoptacross this equilibrium set for toroidal mode numbers n = 1-4, both for the vacuum field and including the plasma response. The computational scan finds that for fixed plasma boundary shape, rotation profiles and toroidal mode number n,δΦoptis a smoothly varying function of (βN, q95). A 2D quadratic function in (βN, q95) is used to parametriseδΦopt, such that for given (βN, q95) and n, an estimate ofδΦoptmay be made without requiring a plasma response computation. To quantify the uncertainty of the parametrisation relative to a plasma response computation,δΦoptis also computed using MARS-F for a set of benchmarking points. Each benchmarking point consists of a distinct free boundary equilibrium reconstructed from an ASDEX Upgrade RMP experiment, and set of experimental kinetic profiles and coil currents. Comparing the MARS-F predictions ofδΦoptfor these benchmarking points to predictions of the 2D quadratic, shows that relative to a plasma response computation with MARS-F the 2D quadratic is accurate to 26.5� for n = 1, and 20.6� for n = 2. Potential sources for uncertainty are assessed.
Original languageEnglish
Article number024005
Pages (from-to)-
JournalPlasma Physics and Controlled Fusion
Issue number2
Publication statusPublished - 1 Feb 2017
Externally publishedYes


All Science Journal Classification (ASJC) codes

  • Nuclear Energy and Engineering
  • Condensed Matter Physics

Cite this

Ryan, D. A., Liu, Y. Q., Li, L., Kirk, A., Dunne, M., Dudson, B., Piovesan, P., Suttrop, W., & Willensdorfer, M. (2017). Numerically derived parametrisation of optimal RMP coil phase as a guide to experiments on ASDEX Upgrade. Plasma Physics and Controlled Fusion, 59(2), -. [024005].