On the thermal-hydraulic optimization of DEMO divertor plasma facing components cooling circuit

P.A. Di Maio, S. Garitta, J.H. You, G. Mazzone, M. Marino, E. Vallone

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Within the framework of the Work Package Divertor, Subproject: Cassette Design and Integration (WPDIV-Cassette) of the EUROfusion action, a research campaign has been jointly carried out by ENEA and University of Palermo to investigate the thermal-hydraulic performances of the DEMO divertor cassette cooling system. Attention has been focussed on the divertor Plasma Facing Components (PFCs) cooling circuit and a parametric analysis has been carried out in order to assess the potential impact of proper layout changes on its thermal-hydraulic performances, mainly in terms of coolant total pressure drop, flow velocity distribution and margin against critical heat flux occurrence. The research activity has been carried out following a theoretical-computational approach based on the finite volume method and adopting a qualified Computational Fluid-Dynamic (CFD) code. Results obtained have allowed to select a revised PFCs cooling circuit configuration, suitable to comply with the prescribed thermal-hydraulic limits assumed for the DEMO divertor design. They are reported and critically discussed.
Original languageEnglish
Pages (from-to)-
JournalFusion Engineering and Design
DOIs
Publication statusAccepted/In press - 2018
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Nuclear Energy and Engineering
  • Materials Science(all)
  • Mechanical Engineering

Cite this