Optical, thermal, and energy performance of advanced polycarbonate systems with granular aerogel

Elisa Moretti, Michele Zinzi, Francesca Merli, Cinzia Buratti

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Polycarbonate panels could be considered as a suitable and cheap solution for walls, roofs, and sheds in non-residential buildings and, at the same time, granular silica aerogel is one of the most promising nano-materials for energy saving in buildings. In the paper, three types of advanced multiwall PC panels (thickness 16, 25, and 40 mm) with translucent granular aerogel were investigated by experimental (thermal and optical) and numerical characterization. By comparing thermal performance of air and aerogel-filled PC systems, it can be noticed that the impact of the aerogel is remarkable: the reduction in U-value is 46%-68%, depending on the aerogel layer thickness. U-value is 1.4 W/m2K for the 16 mm thickness sample and it is 0.6 W/m2K when the thickness increases up to 40 mm. The systems keep their performance in horizontal position, when they are used as roofs. Light transmittance is 0.61 and 0.42 for 16 mm and 40 mm respectively and the reduction with respect to air-filled panels is acceptable (15%) for 16 mm and significant (40%) for 40 mm thickness. The aerogel has also a remarkable impact on the reflectance spectrum, especially between 400 and 1400 nm. The solar factor is 0.58 for 25 mm thickness, quite similar to the low-e glazing one. Finally, energy simulations for a case study showed that aerogel-filled PC systems outperform conventional double glazing systems both for heating and cooling energy demands. However, when compared to low-e glazings, the benefits of the translucent material (also considering the highest thickness) in the interspace are lower for heating and negligible for cooling energy demands. The aerogel-filled polycarbonate systems could be a valid solution for non-residential buildings, enhancing the thermal performance and the light control of the building envelope, especially when they are used as roofs.
Original languageEnglish
Pages (from-to)407 - 417
Number of pages11
JournalEnergy and Buildings
Volume166
DOIs
Publication statusPublished - 1 May 2018

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Building and Construction
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Cite this