Propagation of cold pulses and heat pulses in ASDEX Upgrade

F. Ryter, R. Neu, R. Dux, H.-U. Fahrbach, F. Leuterer, G. Pereverzev, J. Schweinzer, J. Stober, W. Suttrop, F. De Luca, A. Jacchia, J.E. Kinsey

Research output: Contribution to journalArticle

51 Citations (Scopus)

Abstract

Experiments on electron heat transport were performed in the tokamak ASDEX Upgrade, mainly in ohmically heated plasmas, applying either edge cooling with laser blow-off impurity injection or edge heat pulses with ECRH. Repetitive pulses within one plasma discharge were made allowing Fourier transformation of the temperature perturbation, yielding a good signal to noise ratio up to high harmonics and a detailed investigation of the pulse propagation. For densities lower than 1.8×10 19 m -3, an increase of central electron temperature was found as the response to edge cooling via impurity injection similar to observations made in the TEXT, TFTR, RTP and Tore Supra tokamaks. The inversion does not appear instantaneously, but with a time delay roughly compatible with diffusion. Modelling of the propagation of the cold pulses in the framework of the IFS-PPPL model yields qualitative agreement. However, the predicted increase of ion temperature is not observed experimentally on a fast timescale. The response to ECRH heat pulses is not perfectly symmetrical to cold pulse experiments, but the similarities suggest a common underlying physical mechanism. No inversion of the heat pulse is found, instead the initial pulse from the edge is associated with a second, much slower, heat pulse in the centre. This central reaction is in fact quite similar (and not symmetrical) to that of the cold pulses. By varying the position of the ECRH deposition it could be shown that the central increase is related to the arrival of the pulse close to the inversion radius and not to the initial pulse. Modelling was performed to investigate the possible physics mechanisms and for comparison with the cold pulses.
Original languageEnglish
Pages (from-to)1917 - 1932
Number of pages16
JournalNuclear Fusion
Volume40
Issue number11
DOIs
Publication statusPublished - Nov 2000
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)
  • Condensed Matter Physics
  • Nuclear and High Energy Physics

Cite this

Ryter, F., Neu, R., Dux, R., Fahrbach, H-U., Leuterer, F., Pereverzev, G., ... Kinsey, J. E. (2000). Propagation of cold pulses and heat pulses in ASDEX Upgrade. Nuclear Fusion, 40(11), 1917 - 1932. https://doi.org/10.1088/0029-5515/40/11/311