Remotely sensed primary production in the western Ross Sea: Results of in situ tuned models

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E.S. Artamonov, M. Galli

Research output: Contribution to journalArticle

19 Citations (Scopus)


The Southern Ocean plays an important role in the global carbon cycle and, as a consequence, in the planetary climate equilibrium. The Ross Sea is one of the more productive regions in the Southern Ocean, due to strong phytoplankton blooms occurring during summer. Satellite remote sensing is a powerful tool for investigating such phenomena, especially if the bio-optical algorithms are tuned with in situ data. In this paper, after having compared the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the ENEA Lidar Fluorosensor (ELF), the SeaWiFS chlorophyll a (Chl a) algorithm is tuned in the Ross Sea by means of the ELF measurements. The Chl a concentrations obtained in this way have been the basis for estimating productivity values and their evolution during summer 1997-98. Three primary production models have been used, providing information on their accuracy and performance in the Antarctic environment. Our investigations suggest that the primary production was lower than usual during the period 3 December 1997-16 January 1998.
Original languageEnglish
Pages (from-to)77 - 84
Number of pages8
JournalAntarctic Science
Issue number1
Publication statusPublished - Jan 2003
Externally publishedYes


All Science Journal Classification (ASJC) codes

  • Oceanography
  • Ecology, Evolution, Behavior and Systematics
  • Geology

Cite this

Barbini, R., Colao, F., Fantoni, R., Fiorani, L., Palucci, A., Artamonov, E. S., & Galli, M. (2003). Remotely sensed primary production in the western Ross Sea: Results of in situ tuned models. Antarctic Science, 15(1), 77 - 84.