Reversible stress-induced anomalies in the strain function of Nb

G. De Marzi, V. Corato, L. Muzzi, A. Della Corte, G. Mondonico, B. Seeber, C. Senatore

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

The full-matrix set of combined temperature (4.214K) and applied axial strain (εa) data for the bulk pinning force of a technological Nb3Snwire (OST type-I) has been studied at fields up to 19T by combining transport (variable εa) and magnetic (variable T) measurements. Some length of the wire was also jacketed with AISI 316L stainless steel, in order to apply a radial strain and to simulate the thermally induced axial compressive strain that the Nb3Sn wires experience in a cable-in-conduit-conductor (CICC). Within the framework of the unified scaling law, raw scaling data for the effective upper critical field, Bc2*,(T, ε) have been used in order to experimentally determine the strain function, s(ε), of both the bare and the jacketed wires. A direct testing of the various proposed models for s(ε) has been carried out, including the power law, the deviatoric description and the polynomial form. All models adequately fit to the s(ε) of the bare wire, but in the jacketed wire none of them is able to describe the tensile strain region above the Icmaximum, where the enhanced radial compression cannot be neglected. The origin of the onset of a reduced Bc2is also discussed. © 2012 IOP Publishing Ltd.
Original languageEnglish
Article number025015
Pages (from-to)-
JournalSuperconductor Science and Technology
Volume25
Issue number2
DOIs
Publication statusPublished - Feb 2012
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Condensed Matter Physics
  • Metals and Alloys
  • Electrical and Electronic Engineering
  • Materials Chemistry

Cite this

De Marzi, G., Corato, V., Muzzi, L., Della Corte, A., Mondonico, G., Seeber, B., & Senatore, C. (2012). Reversible stress-induced anomalies in the strain function of Nb. Superconductor Science and Technology, 25(2), -. [025015]. https://doi.org/10.1088/0953-2048/25/2/025015