Seismic hazard assessment in florence city italy

Diego Molin, Antonella Paciello

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

A seismic hazard analysis of Florence city was performed in the frame of a project concerning the dynamic behaviour of cable-stayed bridges. Both a probabilistic approach and a methodology based on the use of a local macroseismic catalogue were applied. A local catalogue was expressly compiled for this purpose, to collect the macroseismic intensities actually observed at the site as a result of past earthquakes. This sort of catalogue is an independent tool to verify the assumptions of the probabilistic approach (seismic zoning, earthquake recurrence relation, attenuation model), though it can supply results in terms of macroseismic intensity only and reflects the effective seismic history at the site, without taking into account any variability. The Cornell’s methodology was used to assess probabilistic hazard in terms of macroseismic intensity, peak ground acceleration, peak ground velocity, and pseudovelocity uniform response spectra. The local catalogue points out level VII of the Mercalli-Cancani-Sieberg scale (MCS) as the maximum intensity historically observed in Florence. The probabilistic approach leads to the consideration of intensity VIII MCS as the maximum credible for the city. The probabilistic analysis in terms of ground motion was performed using attenuation relations estimated for alluvium sites, since the geology of Florence area is represented by fluvial and lacustrine deposits of various thickness. Peak ground acceleration values with 90% non exceedence probability in 50 and 500 years are respectively 145 and 219 cm/s's for a shallow alluvium site, and 95 and 157 cm/s*s for a deep alluvium site; the corresponding peak ground velocity values for sites located on alluvium are 6.41 and 11.76 cm/s. Uniform response spectra are provided for shallow and deep alluvium sites, according to frequency-dependent attenuation relations estimated from strong Italian earthquakes. © Imperial College Press.
Original languageEnglish
Pages (from-to)475 - 494
Number of pages20
JournalJournal of Earthquake Engineering
Volume3
Issue number4
DOIs
Publication statusPublished - 1999
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Building and Construction
  • Geotechnical Engineering and Engineering Geology

Cite this