Self-consistent equilibria in a cylindrical reversed-field pinch

C. Lo Surdo, S.C. Guo, R. Paccagnella

Research output: Contribution to journalArticle


A previous investigation by one of us, concerning the self-consistent equilibria of a two-region (plasma+gas) cylindrical Tokamak, is extended to the similar equilibria of a Reversed-Field Pinch, where a significant current density is driven by a dynamo electric field due to turbulence. The previous model has been generalized under the following basic assumptions:a) to the lowest order, the turbulent dynamo electric field Et is expressed as a homogeneous function of degree 1 of the magnetic field B, say Et=α·B, with α being a 2nd-rank tensor, homogeneous of degree 0 in B, and generally depending on the plasma state;b)Et does not appear in the plasma power balance, as if it were produced by a Maxwell demon able to extract the needed power from the plasma internal energy. In particular we show that, in the simplest case when both α and the plasma resistivity η are isotropic and constant, the magnetic field turns out force-free with constant abnormality αμ0/η for vanishing axial electric field Ez. This case has also been solved analytically, for whatever Ez, under circular, besides cylindrical, symmetry. © 1996 Società Italiana di Fisica.
Original languageEnglish
Pages (from-to)1425 - 1442
Number of pages18
JournalNuovo Cimento della Societa Italiana di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics
Issue number12
Publication statusPublished - Dec 1996
Externally publishedYes


All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this