Space-varying templates for real-time applications of cellular nonlinear networks to pattern recognition in nuclear fusion

Simone Palazzo, Andrea Murari, Paolo Arena, Didier Mazon, Jet-Efda Contributors

Research output: Contribution to journalArticle

Abstract

In this paper, a new methodology consisting of space-varying templates in cellular nonlinear networks (CNNs) for real-time visual pattern recognition in nuclear fusion devices is presented. The development of space-varying templates is a new upgrade, driven by the need to process different parts of the images in different ways. The new approach has been applied to the identification in real time of various objects present in the Joint European Torus videos of both infrared (IR) and visible cameras. IR videos are here used to detect hot spots and the regions of the walls in which dangerously high temperatures are reached, whereas visible cameras provide information about multifaceted asymmetric radiations from the edge, which are dangerous instabilities that can lead to disruptions. Their identification is particularly difficult because of their movement and their shape which is similar to other objects present in the frames. Therefore, in addition to space-varying template CNNs, quite sophisticated morphological operators have to be deployed and their outputs processed by machine learning tools, such as support vector machines. The implementation of the whole methodology was performed in a field-programmable gate array board, obtaining, in both applications, a final success rate close to 100% and a frame rate higher than 200 frames/s. © 2013 IEEE.
Original languageEnglish
Article number6582663
Pages (from-to)2516 - 2526
Number of pages11
JournalIEEE Transactions on Plasma Science
Volume41
Issue number9
DOIs
Publication statusPublished - 2013
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Condensed Matter Physics

Cite this