Structural and electronic properties of small CuO

Y. Pouillon, C. Massobrio

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

The bonding between copper and oxygen atoms and its evolution with size has motivated extensive photoelectron spectroscopy measurements (see H. Wu, S. Desai, L.-S. Wang, J. Phys. Chem. A, 101 (1997) 2103-2777). Despite the small sizes involved in the experimental work carried out so far, the structure of the isomers is far from being elucidated. To go beyond qualitative interpretations, we have performed structural optimizations by using the first-principles molecular dynamics framework. The calculations on copper oxide clusters presented here are carried out within density functional theory (DFT), with a plane-wave basis set and generalized gradient corrections. Our results show that except in one case the CuO3cluster takes a planar geometry, one of these isomers being an ozonide. The most stable isomer of CuO4also exhibits planar geometry. Results obtained for CuO6show that the symmetries deduced from the experiments do not correspond to the most stable forms, and are even unstable in some cases. More generally, the three largest clusters in the series are made of the structural blocks corresponding to the shape of the smaller isomers. Ozonides are favoured as the number of atoms increases. © 2003 Elsevier B.V. All rights reserved.
Original languageEnglish
Pages (from-to)306 - 312
Number of pages7
JournalApplied Surface Science
Volume226
Issue number1-3 SPEC. ISS.
DOIs
Publication statusPublished - 15 Mar 2004
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Surfaces, Coatings and Films

Cite this