Synthesis of aluminum oxide-based ceramics by laser photoinduced reactions from gaseous precursors

R. Alexandrescu, E. Borsella, S. Botti, M.P. Cesile, S. Martelli, R. Giorgi, S. Turtù, G. Zappa

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Laser-driven synthesis of Al2O3based ceramic powders from gaseous precursors has been accurately investigated. Different concentrations of the reactant gaseous precursors are shown to influence both the process yield and the synthesized powder composition. Depending on the relative concentration of TMA : Al(CH3)3and N2O, the process leads either to the formation of nanocrystalline γ-Al2O3with large free carbon contamination and traces of the Al3O3N phase or to the formation of a mixed γ-Al2O3, Al2OC compound. The different reaction paths have been attributed to the intermediate formation of aluminum carbide. Particular attention has been paid to the gaseous reaction products to correctly interpret the source of carbon contamination observed in the formed powders. Calcining at moderate (900°C) and high (1400°C) temperatures induces nanosized γ-Al2O3powder and the γ→α-Al2O3transition with particle coalescence and growth.
Original languageEnglish
Pages (from-to)774 - 782
Number of pages9
JournalJournal of Materials Research
Volume12
Issue number3
DOIs
Publication statusPublished - 1997
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

Alexandrescu, R., Borsella, E., Botti, S., Cesile, M. P., Martelli, S., Giorgi, R., ... Zappa, G. (1997). Synthesis of aluminum oxide-based ceramics by laser photoinduced reactions from gaseous precursors. Journal of Materials Research, 12(3), 774 - 782. https://doi.org/10.1557/JMR.1997.0113