Temporal properties of GX 301-2 over a year-long observation with SuperAGILE

Y. Evangelista, M. Feroci, E. Costa, E. Del Monte, I. Donnarumma, I. Lapshov, F. Lazzarotto, L. Pacciani, M. Rapisarda, P. Soffitta, A. Argan, G. Barbiellini, F. Boffelli, A. Bulgarelli, P. Caraveo, P.W. Cattaneo, A. Chen, F. D'Ammando, G. Di Cocco, F. FuschinoM. Galli, F. Gianotti, A. Giuliani, C. Labanti, P. Lipari, F. Longo, M. Marisaldi, S. Mereghetti, E. Moretti, A. Morselli, A. Pellizzoni, F. Perotti, G. Piano, P. Picozza, M. Pilia, M. Prest, G. Pucella, A. Rappoldi, S. Sabatini, E. Striani, M. Tavani, M. Trifoglio, A. Trois, E. Vallazza, S. Vercellone, V. Vittorini, A. Zambra, L.A. Antonelli, S. Cutini, C. Pittori, B. Preger, P. Santolamazza, F. Verrecchia, P. Giommi, L. Salotti

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

We present the long-term monitoring of the high-mass X-ray binary GX 301-2 performed with the SuperAGILE (SA) instrument on-board the Astro-rivelatore Gamma ad Immagini LEggero (AGILE) mission. The source was monitored in the 20-60 keV energy band during the first year of the mission from 2007 July 17 to 2008 August 31, covering about one whole orbital period and three more pre-periastron (PP) passages for a total net observation time of about 3.7 Ms. The SA data set represents one of the most continuous and complete monitoring at hard X-ray energies of the 41.5 days long binary period available to date. The source behavior was characterized at all orbital phases in terms of hard X-ray flux, spectral hardness, spin-period history, pulsed fraction, and pulse shape profile. We also complemented the SA observations with the soft X-ray data of the Rossi X-Ray Timing Explorer/All-Sky Monitor. Our analysis shows a clear orbital modulation of the spectral hardness, with peaks in correspondence with the PP flare and near phase 0.25. The hardness peaks, we found, could be related with the wind-plus-stream accretion model proposed in order to explain the orbital light-curve modulation of GX 301-2. Timing analysis of the pulsar spin period shows that the secular trend of the ∼ 680 s pulse period is consistent with the previous observations, although there is evidence of a slight decrease in the spin-down rate. The analysis of the hard X-ray-pulsed emission also showed a variable pulse shape profile as a function of the orbital phase, with substructures detected near the passage at the periastron, and a clear modulation of the pulsed fraction, which appears in turn strongly anticorrelated with the source intensity. © 2010. The American Astronomical Society. All rights reserved.
Original languageEnglish
Pages (from-to)1663 - 1673
Number of pages11
JournalAstrophysical Journal
Volume708
Issue number2
DOIs
Publication statusPublished - 2010
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

Evangelista, Y., Feroci, M., Costa, E., Monte, E. D., Donnarumma, I., Lapshov, I., ... Salotti, L. (2010). Temporal properties of GX 301-2 over a year-long observation with SuperAGILE. Astrophysical Journal, 708(2), 1663 - 1673. https://doi.org/10.1088/0004-637X/708/2/1663