Thermally sprayed nanostructured coatings for anti-wear and TBC applications: State-of-the-art and future perspectives. State-of-the-art and future perspectives.

Research output: Chapter in Book/Report/Conference proceedingChapter (peer-reviewed)

4 Citations (Scopus)


In the last decade the interest in nanostructured coatings has grown because of their potentially outstanding functional properties compared with their conventional counterparts. Thermal spraying is a cost-effective industrial technology suitable for deposition of thick composite and ceramic coatings. The control of processing parameters is an interesting challenge when agglomerated nanostructured powders are employed. These particles should be only partially melted to preserve their starting nanostructure, thus generating a coating with a unique microstructure, typically composed of semi-molten areas embedded in the surrounding fully melted binder. This chapter reviews state-of-the-art and future perspectives of thermally sprayed nanostructured coatings.Typical detrimental effects associated with high temperature and the spraying environment - carbide dissolution and decarburization - should be minimized during processing of cermet particles. The HVOF process allows fabrication of dense coatings with enhanced wear resistance. Nanostructured composite coatings exhibit enhanced toughness and resistance to crack propagation, resulting in improved wear resistance, as observed for Al2O3-TiO2coatings for marine applications. In turn, nanostructured zirconia-based coatings, produced by atmospheric or suspension plasma spraying, are promising thermal barriers for turbine engines because of their toughness and thermal cycling resistance.
Original languageEnglish
Title of host publicationAnti-Abrasive Nanocoatings: Current and Future Applications
PublisherElsevier Inc.
ISBN (Electronic)9780857092175
ISBN (Print)9780857092113
Publication statusPublished - 18 Dec 2014
Externally publishedYes


All Science Journal Classification (ASJC) codes

  • Engineering(all)

Cite this