Three-dimensional study of radiation symmetrization in some indirectly driven heavy ion ICF targets

M. Temporal, S. Atzeni

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

Symmetrization of the radiation field inside hohlraum targets for indirectly driven heavy ion beam inertial confinement fusion (ICF) is investigated numerically. The targets considered consist of a casing, enclosing the spherical fuel capsule, and a few cylindrical radiators, schematically representing ion beam irradiated converters. Radiation absorption and re-emission are dealt with as in the paper by Murakami and Meyer-ter-Vehn (Nucl. Fusion 31 (1991) 1333), but with the geometry extended to three dimensions and with the finite size of the radiators taken into account. It is found that, for a practical casing to capsule area ratio (of the order of ten) and practical converter aspect ratios, two converters (allowing for two-side axisymmetric irradiation) cannot provide the uniformity required for ICF. However, with a spherical casing with six converters (placed in couples along the axes of a Cartesian co-ordinate system) it would be possible to illuminate a capsule with a non-uniformity well below 2%, which could satisfy the ICF requirements. The effects of changing the area ratio, the size and position of the converters and the geometry of the hohlraum are also discussed.
Original languageEnglish
Article numberI03
Pages (from-to)557 - 566
Number of pages10
JournalNuclear Fusion
Volume32
Issue number4
DOIs
Publication statusPublished - 1992
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Condensed Matter Physics

Cite this